
  
 
 
 
 
 

Risk Adjustment in a Nutshell 
Konstantin Beck1 

 

This paper is designed to explain cause and functioning of risk adjustment in (Swiss) health insurance. 

It is written for actuaries in a condensed, formal, and (hopefully) easy to follow language. It keeps the 

basics short and is written in English in order to serve all Swiss languages simultaneously. 

1. Some Definitions 

We describe risk adjustment in the context of health insurance markets, where competing insurers 

cover the health care expenditures net of copayment of their enrollees, each charging a community 

rated premium. We use 𝐶 (costs) for net health care expenditures and 𝑛 for the number of insured, 

ignoring the fact, that coverage is usually measured in months. 

The basic problem in an insurance market with community rated premiums arises, when the set of all 

𝑛 insured, 𝔑, can be split by well-defined risk indicators into R different subsets (risk groups, 𝔑𝑟, with 

𝔑𝑟 ∩ 𝔑𝜌 = { }, whenever 𝑟 ≠ 𝜌, and ⋃ 𝔑𝑟
𝑅
𝑟=1 = 𝔑.) such that the expected average costs per group 

differ systematically and predictably. This means 𝐶𝑟 ≠ 𝐶𝜌, with 𝑟 and 𝜌 indicating risk groups (𝑟, 𝜌 ∈

{1,2, … 𝑅}), 𝐶𝑟 and 𝐶𝜌 average costs of the respective risk group, and 𝑟 ≠ 𝜌 .2 

Total average costs of all insured within the entire market are: 𝐶 = ( ∑ 𝐶𝑟𝑛𝑟
𝑅
𝑟=1  )1

𝑛
. And the distribution 

of 𝑛 insured over 𝑅 risk groups is called the “risk structure of the market”. Members of risk groups 𝑟 

with 𝐶𝑟 > 𝐶 are called “high risks”, while members of risk groups 𝜌 with 𝐶𝜌 < 𝐶 are called “low risks”. 

2. The Problem 

Each insurer 𝑖 might deviate from the market average by costs, by risk structure, or by both. Deviation 

in costs means 𝑑𝑟𝑖 = (𝐶𝑟𝑖 − 𝐶𝑟) ≠ 0. This possible cost disadvantage (when 𝑑𝑟𝑖 > 0) remains the 

insurer’s problem and gives the incentive to control costs. The possible advantage (with 𝑑𝑟𝑖 < 0) is 

kept by the insurer and permits insurer 𝑖 to offer below average premiums. 

Deviations in risk structures, (
𝑛𝑟𝑖

𝑛𝑖
−

𝑛𝑟

𝑛
) ≠ 0, produce cost differences as well. Insurer with an above 

average share of low risks show expected average costs below market average and vice versa. This 

cost advantage might even overcompensate for costs disadvantages due to inefficiency (𝑑𝑟𝑖 > 0). 

Therefore, low premiums do not necessarily indicate an efficient insurer, because inefficiency might be 

 

1 With many thanks to Lennart Pirktl, Yannick Schwarz, Magnus Vieten, Alberto Holly, Richard van 
Kleef, and Randall Ellis for very helpful comments on an earlier version of this note.  
2 For practical reasons, risk groups remain unchanged from one year to another. Therefore, it might be 
possible, that for some groups and a given year 𝐶𝑟 = 𝐶𝜌. However, these exceptions do not 

fundamentally alter our argumentation.  



  
 
 
 
 
 
masked by an advantageous risk structure. This gives all insurer an incentive to select risks to 

increase/decrease the share of low/high risks. 

Risk selection (in contrast to cost reduction) is unwanted in a social health insurance market, because 

it violates the “equal treatment”-rule. Resources invested in selection are wasted efforts in a market 

with mandatory coverage, where each enrollee must be covered in the end. Finally, it is inefficient, 

because a less efficient insurer can dominate the market as long as it is able to keep a significantly 

advantageous risk structure. More specifically, selection-driven premium variation might incentivize 

consumers to enroll in insurance plans with a successful selection strategy rather than plans with a 

successful cost-containment strategy (which contributes to the increase in total healthcare spending). 

3. The Solution 

Risk adjustment (RA) is established to prevent risk selection. The Swiss concept is to redistribute 

insurer’s premium money according to predictable risk (dis-)advantages. We start with a categorical 

RA where each individual is assigned to only one risk group. This type of formula has been applied 

from 1996 to 2019. Its straightforward structure helps to understand some basic properties of risk 

adjustment and keeps the notation quite simple. In a second step, we will present the more 

sophisticated, non-categorical formula used since 2020 and show, why the same or similar properties 

still hold. The predictable (dis-) advantage per risk group reads: (𝐶 − 𝐶𝑟) = 𝑎𝑟. This expression is, 

when positive, the RA-contribution every insurer must pay into the RA-fund for each of its low-risk 

insured who is member of risk group 𝑟. It is (when negative) the contribution every insurer gets from 

the RA-fund for each of its high-risk enrollees in risk group 𝑟. The insurer’s total (net) payment reads: 

∑ 𝑛𝑟𝑖𝑎𝑟
𝑅
𝑟=1 . 

We show the impact of RA arguing with any risk group 𝑟 that might be preferred or not (𝐶 − 𝐶𝑟) ⋚ 0, 

and might be over- or underrepresented in an insurer’s 𝑖 set of enrollees, (
𝑛𝑟𝑖

𝑛𝑖
−

𝑛𝑟

𝑛
) ⋚ 0. Within this risk 

group 𝑟, insurer i might have a cost advantage, or disadvantage, 𝑑𝑟𝑖 = (𝐶𝑟𝑖 − 𝐶𝑟) ⋚ 0. For each 

enrollee of risk group 𝑟, a respective transfer 𝑎𝑟, must be paid, either by the insurer to the RA-fund or 

vice versa.  

Taking these RA-transfers into account, the average costs after RA, 𝐶𝑟𝑖
𝑅𝐴, of insurer i in risk group 𝑟 

reads: 𝐶𝑟𝑖
𝑅𝐴 =

1

𝑛𝑟𝑖
[𝑛𝑟𝑖𝐶𝑟𝑖 + 𝑛𝑟𝑖𝑎𝑟] =

𝑛𝑟𝑖

𝑛𝑟𝑖
[(𝐶𝑟 + 𝑑𝑟𝑖) + (𝐶 − 𝐶𝑟)] = 𝐶 + 𝑑𝑟𝑖. This formula reflects the market 

average C, plus the efficiency (dis-)advantage of the respective insurer, 𝑑𝑟𝑖, the insurer should be held 

responsible for. What we found for a specific risk group holds as well for the insurer’s total average 

cost, 𝐶𝑖
𝑅𝐴 =

1

𝑛𝑖
∑ [𝑛𝑟𝑖𝐶 + 𝑛𝑟𝑖𝑑𝑟𝑖]

𝑅
𝑟=1 = 𝐶 + 𝐷𝑖 , with 𝐷𝑖 denoting the weighted average of insurer’s 

efficiency (dis-)advantages per risk group, 𝐷𝑖 = ∑
𝑛𝑟𝑖

𝑛𝑖

𝑅
𝑟=1 𝑑𝑟𝑖.  

In other words: A perfectly defined RA-formula can correct for unwanted selection (dis-)advantages, 

leaving efficiency gains or losses (𝐷𝑖) in the insurer’s responsibility.3   

 

3 This holds if the risk adjuster variables are based on exogenous information (e.g., age). Variables 
based on prior use of health care expenditures (such as prior hospitalization or pharmaceutical costs 
groups, see section 7) are to some extent ‘endogenous’ in the sense that higher (lower) utilization 
results in higher (lower) future RE compensations. 



  
 
 
 
 
 

4. Estimation of the RA Parameters 

OLS is an appropriate method to estimate the necessary parameters for the RA-formula. Given 

individual health care expenditures-data of all n insured, the following regression provides the 

parameters needed: 

(1)  𝐶𝑗 = ∑ 𝛽𝑟𝑠𝑟𝑗 + 𝜀𝑗
𝑅
𝑟=1 ,  

with index j denoting an insured, 𝜀𝑗 denoting white noise with expected value equal to zero, and the 

dummy variable 𝑠𝑟𝑗 assigns individual j to risk group r, such that 𝑠𝑟𝑗 = 1, when individual j belongs to r, 

and else 𝑠𝑟𝑗 = 0,  (such that ∑ ∑ 𝑠𝑟𝑗𝑟𝑗 = 𝑛). The estimation of 𝛽𝑟, provides average costs per risk group 

r (�̂�𝑟 = 𝐶𝑟). 4 �̂�𝑟 is therefore the necessary input to calculate an RA-transfer, 𝑎𝑟 = (𝐶 − �̂�𝑟). 

5. RA Parameters and Complex Premium Structures  

All this holds true for a flat, community rated premium. Things become more complicated when 

premium structure is complex. In the Swiss case the regulator expects rebates to be granted to young 

adults below 26 years. (This section explains the rationale behind Art. 16a KVG.)   

A rebate implies a subdivision of the set of all n insured, 𝔑, into those, entitled to get a rebate (here all 

adults below 26, 𝔓1) and the remaining (𝔓0, with 𝔓0 ∩ 𝔓1 = { }). Problems occur when all members of 

𝔓1 (entitled to get a rebate) originate from the same risk group 𝜌 such that 𝔑𝜌 ∪ 𝔓1 = 𝔑𝜌 (and 𝔓1 ≠

{ }). An actuarial fair rebate (𝐶 − 𝐶𝜌) should be possible as long as 𝐶𝜌 < 𝐶. RA transfers for this specific 

risk groups read: 𝑎𝜌 = 𝐶 − 𝐶𝜌. And expected costs are: 𝐶𝜌
𝑅𝐴 = 𝐶𝜌 + 𝐶 − 𝐶𝜌 = 𝐶. Since expected costs 

equal total average costs, the actuarial fair rebate for group 𝜌 is zero, 𝐶 − 𝐶𝜌
𝑅𝐴 = 𝐶 − 𝐶 = 0.5  

A fair rebate is impossible without constraining solidarity in a first step. When we reduce the transfers 

of group 𝜌 by ∆ (with 0 < ∆ < 1), to ∆𝑎𝜌 = ∆(𝐶 − 𝐶𝜌), expected costs become 𝐶𝜌
𝑅𝐴 = 𝐶𝜌 + ∆(𝐶 − 𝐶𝜌)  <

𝐶𝜌 + (𝐶 − 𝐶𝜌) =  𝐶. This inequality holds because the brackets are by definition positive. 

What happens to the remaining risk groups? They all lose transfers from risk group 𝜌. The lost amount 

per insured, 𝐿, reads: 𝐿 = 𝑛𝜌(1 − Δ)(𝐶 − 𝐶𝜌)
1

(𝑛−𝑛𝜌)
. Here, 𝑛𝜌 and (𝑛 − 𝑛𝜌) indicate the number of 

rebated and not rebated insured, respectively. Since all three brackets in expression 𝐿 are positive, 

𝐿 > 0. Therefore, expected costs of each remaining risk group exceed total average: 𝐶𝑟
𝑅𝐴 = 𝐶𝑟 + 𝐶 −

𝐶𝑟 + 𝐿 = 𝐶 + 𝐿 > 𝐶.  

This opens a window for an actuarial fair rebate, namely: [𝐿 + (1 − ∆)(𝐶 − 𝐶𝜌)] > 0. 

Conclusion: A reduction of the solidarity transfer is a precondition for a rebate given to a set of 

entitled insured, when this set corresponds perfectly with a risk group.  

It should be evident that the same conclusion holds, when the set of entitled insured, 𝔓1, corresponds 

perfectly to the union of several risk groups, for example 𝔓1 = 𝔑𝑞 ∪ 𝔑𝜌.  

 

4 For a formal proof see: Beck, 2013, Risiko Krankenversicherung, Haupt Bern, S. 407f.  
5 Unfair rebates would produce predictable losses for group 𝜌 and gains for all other groups. 



  
 
 
 
 
 

6. Two Problems of Prospective Payments 

We have to distinct concurrent from prospective formulas. Concurrent formulas use estimations from 

year t to calculate transfers for the same year t, 𝑎𝑟𝑡 = (𝐶𝑡 − �̂�𝑟𝑡). However, Swiss risk adjustment is 

applied prospectively, in order to prevent cost redistribution, since risks are projections into the future. 

Because of that, estimations from year (𝑡 − 1) are used to calculate RA contributions in year t, 𝑎𝑟𝑡 =

(𝐶(𝑡−1) − �̂�𝑟(𝑡−1)). This has two important consequences. 

First, given a continuous growth in health care expenditures, cost estimated for the preceding year, 

(𝑡 − 1), is lagging behind the costs in year 𝑡. Therefore Art. 13 sec. 2 VORA defines a surcharge (1 +

𝜏). This surcharge is not simply (1 + 𝜏) =
𝐶𝑡

𝐶𝑡−1
 but (1 + 𝜏) =

𝐶𝑡

∑ 𝑛𝑟𝑡𝑟 𝐶𝑟𝑡−1/𝑛𝑡
, neutralizing cost 

increases/decreases due to changes in the risk structure from year (𝑡 − 1) to 𝑡.  

Second, OLS-estimations are true in expectation. This is to say all �̂�𝑟 fulfill the following condition: 
1

𝑛
∑ �̂�𝑟𝑛𝑟

𝑅
𝑟=1 = 𝐶, which makes RA a zero sum game: ∑ 𝑛𝑟𝑎𝑟

𝑅
𝑟=1 = ∑ 𝑛𝑟(𝐶 − �̂�𝑟) = 0𝑅

𝑟=1 . This holds as 

long as RA is applied as a concurrent formula. 

With annually changing risk structures, the zero-sum condition is not necessarily fulfilled: 

∑ 𝑛𝑟𝑡(𝐶(𝑡−1) − �̂�𝑟(𝑡−1)) ⋛ 0𝑅
𝑟=1 .  

To reestablish the zero-sum property, 𝐶(𝑡−1) must be substituted by 
1

𝑛𝑡
∑ 𝑛𝑟𝑡�̂�𝑟(𝑡−1) = �̃�𝑅

𝑟=1  such that 

∑ 𝑛𝑟𝑡𝑎𝑟𝑡 =𝑅
𝑟=1 ∑ 𝑛𝑟𝑡(�̃� − �̂�𝑟(𝑡−1)) = 0𝑅

𝑟=1 . (This section describes the rational of Art. 14 VORA). 

Combining both modifications, the final RA contribution reads: 𝑎𝑟𝑡
𝑚𝑜𝑑 = (1 + 𝜏)(�̃� − �̂�𝑟(𝑡−1)) 

7. RA with Pharmaceutical Cost Groups 

The RA formula discussed so far has been based on 𝑅 categorical risk groups. Since 2020 the formula 

is extended, and insured are simultaneously assigned to a risk group 𝑟 and to none, one, or several 

pharmaceutical cost groups (PCG). Pharmaceutical cost groups contain individuals with expected 

costs above average even after adjusting for risk differences between the 𝑅 risk groups. Attachment to 

a PCG is defined by the specific set of pharmaceuticals group members consume. 

Again, OLS is applied to calculate the parameters needed for risk adjustment: 

(2)  𝐶𝑗 = ∑ 𝛽𝑟𝑠𝑟𝑗 +𝑅
𝑟=1 ∑ 𝜋𝑞𝑝𝑞𝑗

𝑄
𝑞=1 + 𝜀𝑗   

Expression (2) compared with (1) is extended by 𝑝𝑞𝑗, a dummy variable that assigns individual j to 

PCG q, when equal to one, else it is equal to zero, and 𝜋𝑞, the additional costs members of PCG q 

predictably have after being equalized based on R risk groups. In other words, there are Q different 

PCG groups and �̂�𝑞 is the contribution paid by RA for each member of the specific PCG 𝑞, in order to 

subsidies his or her above average costs. �̂�𝑞 is positive by law, because whenever a �̂�𝑞 < 0 occurs, 

this specific PCG must be excluded (Art. 16 sec. 3 VORA). 

The PCG-subsidy for each individual j reads: Π𝑗 = ∑ �̂�𝑞𝑝𝑞𝑗
𝑄
𝑞=1 , for individuals without PCG-entitlement 

all their 𝑝𝑞𝑗 = 0, and so is their Π𝑗. 



  
 
 
 
 
 

To express the difference between �̂�𝑟 (from expression (2)) and  �̂�𝑟 (from expression (1)), we sort all 

indices 𝑗 according to the risk group r, they belong to, in ascending order, such that for each j 

belonging to r :  𝑗 ∈ [𝐽𝑟
𝑀𝐼𝑁; 𝐽𝑟

𝑀𝐴𝑋], with 𝐽𝑟
𝑀𝐴𝑋 − 𝐽𝑟

𝑀𝐼𝑁 +  1 = 𝑛𝑟 and  𝐽𝑟
𝑀𝐴𝑋 + 1 = 𝐽(𝑟+1)

𝑀𝐼𝑁 , as long as  (𝑟 + 1) ≤

𝑅. Average PCG-subsidy per risk group r reads: 

(3)  Π̅𝑟 =
1

𝑛𝑟
∑ Π𝑗

𝐽𝑟
𝑀𝐴𝑋

𝑗=𝐽𝑟
𝑀𝐼𝑁  .  

Now �̂�𝑟 − �̂�𝑟 = Π̅𝑟, since Π̅𝑟 this is the average amount of money taken out from the respective risk 

group to be transferred to the PCG-people of risk group r.  

We know from section 6, that the sum of transfers in between risk groups is zero: ∑ 𝑛𝑟𝑎𝑟
𝑅
𝑟=1 =

∑ 𝑛𝑟(𝐶 − �̂�𝑟) = 0𝑅
𝑟=1 . Since �̂�𝑟 + Π̅𝑟 = �̂�𝑟 it follows: 𝑛𝑟 (𝐶 − �̂�𝑟) = 𝑛𝑟Π̅𝑟 which is equivalent to all PCG-

transfers of the respective risk group: ∑ Π𝑗
𝐽𝑟

𝑀𝐴𝑋

𝑗=𝐽𝑟
𝑀𝐼𝑁 . Therefore, PCG transfers are a zero-sum game 

within each risk group, or all PCG transfers for members of group r are financed by all members of the 

respective group r.  The contribution for insured j in risk group r reads: 

(4)  𝑎𝑗
𝑃𝐶𝐺 = 𝐶 − 𝛽𝑟(𝑗) − Π𝑗,   

And the average RA contribution per risk group 𝑟 reads: 𝑎𝑟
𝑃𝐶𝐺 = 𝐶 − 𝛽𝑟 − Π̅𝑟 = 𝐶 − (𝛽𝑟 − Π̅𝑟) − Π̅𝑟 =

𝐶 − 𝛽𝑟 = 𝑎𝑟. This implies for any risk group: Expected RA contributions per risk group remain 

unchanged, 𝑎𝑟
𝑃𝐶𝐺 = 𝑎𝑟, and all conclusions from section 5 still hold. 

8. Further Reading 

This paper’s focus is on the “why” of Risk Adjustment. The “how” can be derived from Bürgin, while the 

legal grounds are discussed in Beck. Readers interested in a more profound discussion of this topic 

might also have a look at Schmid et al. or McGuire and van Kleef. Mathematical proofs are given in 

Frisch, Waugh, and Lovell.  
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